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Abstract. Magnetic and superconducting pairing correlation functions in a general class of
Hubbard models, thet–J model and a single-band Hubbard model with additional bond–charge
interaction are investigated. Some rigorous upper bounds of the corresponding correlation
functions are obtained. It is found that the decay of the spin–spin correlation function with
temperature in the general Hubbard models cannot be slower than the inverse square law at
low temperatures and the inverse law at high temperatures, while the on-site pairing correlation
function cannot be slower than the inverse law. An upper bound for the average energy of the
t–J model is found. The upper bounds for the spin–spin and the electron pairing correlation
functions in thet–J model as well as in the Hubbard model with bond–charge interaction are
also obtained. These bounds are expected to provide certain standards for approximate methods.
In some special cases, these bounds rule out the possibility of corresponding magnetic and
pairing long-range order.

1. Introduction

The study of superconductivity and magnetism in strongly correlated electron systems
has been receiving intense interest recently. This may be attributed to the discovery of
high-temperature superconductivity. Since the idea of explaining superconductivity in the
framework of strongly correlated electron systems (the Hubbard model and its variants) was
proposed [1], numerous investigations of these systems have been made. For the many-body
problems, which are difficult to solve, only a few rigorous results are known in the literature
[2]. Most researchers used approximate or numerical methods to investigate spin and pairing
correlation functions, and usually achieved different—sometimes even conflicting—results.
In addition, some difficulties in the numerical methods remain unsolved. Therefore, the
answers to a variety of interesting questions regarding these systems remain ambiguous to
date. In this situation, it is really necessary to search for some exact results which, on the
one hand, can be used to examine the validity of some kinds of approximation or numerical
calculation, and on the other hand, can help us to further understand the physical properties
of these systems.

In this paper, we will study magnetic and pairing correlation functions in the following
systems: a general class of Hubbard models, thet–J model and a single-band Hubbard
model with additional bond–charge interaction. By using Bogoliubov’s inequality, we give
some upper bounds for the correlation functions studied, which, to some extent, may provide
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certain checks and standards for approximate methods. In some special cases, these bounds
rule out the possibility of the corresponding magnetic long-range order (LRO) and the
on-site pairing LRO.

The rest of the paper is organized as follows. In section 2 a general class of Hubbard
models are studied. Symmetries of correlation functions are discussed. The upper bounds for
the magnetic correlation function and the on-site pairing correlation function are presented.
In sections 3 and 4, the magnetic and pairing correlation functions in thet–J model and
a single-band Hubbard model with bond–charge interaction are discussed. A simple upper
bound for the average energy of thet–J model is obtained. The upper bounds for the
spin–spin correlation functions and the pairing correlation functions in the two models are
given. In section 5 a summary of the results is presented.

2. Hubbard models

Consider a general class of Hubbard models on ad-dimensional lattice withM (even) sites.
The Hamiltonian is

H =
∑
r,r ′

tr,r ′(a†
r ar ′ + b†

rbr ′) +
∑

r

Ura
†
r arb

†
rbr −

∑
r

µr(a
†
r ar + b†

rbr ) (2.1)

where tr,r ′ is the hopping matrix element, and satisfiest∗r,r ′ = tr ′,r . ar (br) annihilates a
spin-up (spin-down) electron at siter, Ur is the local spin-independent Coulomb potential,
and µr is the position-dependent chemical potential. No othera priori assumption (apart
from those indicated explicitly in the context) is needed. This is thus a very general form
of the Hubbard model.

Define the local spin operators as follows:S+
r = a

†
r br , S−

r = b
†
rar , Sz

r = 1
2(na

r − nb
r )

with na
r = a

†
r ar andnb

r = b
†
rbr , and [S+

r , S−
r ′ ] = 2Sz

r δr,r ′ , [S±
r , Sz

r ′ ] = ∓S±
r δr,r ′ . The global

spin operatorsS± = ∑
r S±

r and Sz = ∑
r Sz

r obey the usual SU(2) symmetry and satis-
fy [S±, H ] = [Sz, H ] = [S2, H ] = 0, where S2 = 1

2(S+S− + S−S+) + (Sz)2 has the

eigenvalueS(S + 1). The particle numberN = ∑
r (a

†
r ar + b

†
rbr ) = N↑ + N↓ is conserved,

and commutes with the Hamiltonian. Define theη-operators as follows:η+
r = a

†
r b

†
r , η

−
r =

brar , η
z
r = 1

2(nr −1) with nr = na
r +nb

r , and [η+
r , η−

r ′ ] = 2ηz
r δr,r ′ , [η±

r , ηz
r ′ ] = ∓η±

r δr,r ′ . Below
we will investigate the spin and the on-site pairing correlation functions of the model, and
these definitions are necessary for subsequent analyses.

2.1. Symmetries of correlation functions

First let us for convenience write down three well-known unitary operators explicitly [3],
which are frequently cited in the literature, and were usually applied for studying the
transformed systems connected by them, but whose explicit forms are not obvious. The
operator

U0 =
∏

r

(br − ε(r)b†
r )

with ε(r) = (−1)r and U†
0U0 = 1 describes the well-known particle–hole transformation

[4]: U0arU†
0 = ar, U0brU†

0 = ε(r)b
†
r , which makesUr → −Ur in the Hamiltonian (2.1) with

µr = Ur/2 if tr,r ′ = −t for nearest neighbours and zero otherwise, like in the standard single-
band Hubbard model. Here(−1)r can be understood as a factor eiQ·r with Q = (π, π, . . .)

in two or three dimensions. The operator

U1 =
∏

r

(ar − a†
r )(br − b†

r )
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with U†
1U1 = 1 describes another symmetric particle–hole transformation:U1arU†

1 =
a

†
r , U1brU†

1 = b
†
r which makesS+

r → −S−
r , Sz

r → −Sz
r , η+

r → −η−
r and tr,r ′ → −tr ′,r

in (2.1) with additional constants and proper adjustment of the chemical potential. The
operator

U2 = exp

[
iπ

2

∑
r

(a†
r − b†

r )(ar − br)

]
with U†

2U2 = 1 exchanges the spins (up–down symmetry):U2a
†
rU†

2 = b
†
r , which leaves

the Hamiltonian (2.1) unchanged, but makesS+
r → S−

r and Sz
r → −Sz

r . Of course, these
unitary operators can be used either individually or in a combined way.

We now give some relations for thermal correlation functions. It is noteworthy that
some of them are trivial, but some are less obvious and thus worth writing down. As the
expectation value of the commutator, [na

r , H ] = ∑
r ′(tr,r ′a

†
r ar ′ − tr ′,ra

†
r ′ar), vanishes, we get∑

r ′
tr,r ′ 〈a†

r ar ′ 〉 =
∑
r ′

tr ′,r〈a†
r ′ar〉 (2.2)

where〈· · ·〉 denotes the thermal average. Using the up–down symmetry, connected byU2,
we have ∑

r ′
tr,r ′ 〈b†

rbr ′ 〉 =
∑
r ′

tr ′,r〈a†
r ′ar〉. (2.3)

Note that (2.2) and (2.3) are general, not limited to the translation-invariant case, for we
have not made use of any spatial symmetry of the lattice. The expectation value of the
commutator [S+

r ′ Sz
r , S

−] = 2Sz
r ′Sz

r − S+
r ′ S−

r yields

〈S+
r ′ S

−
r 〉 = 2〈Sz

r ′S
z
r 〉 (2.4)

due toS− commuting withH . This symmetry is essential, for it is local, and is valid for
any r andr ′. Similarly, we can obtain a lot of such symmetries, for instance,

〈Sz
r ′S

±
r 〉 = 0 〈S±

r 〉 = 〈Sz
r 〉 = 0 〈Sz

r nr ′ 〉 = 0

〈S+
r ′ S

−
r 〉 = 2〈na

r S
z
r ′ 〉 = −2〈nb

r S
z
r ′ 〉 〈na

r ′S
z
r 〉 = 〈na

r S
z
r ′ 〉

〈S+
r ′ S

−
r 〉 = 2〈Sz

r S
+
r ′ S

−
r ′ 〉 = 2〈S+

r S−
r Sz

r ′ 〉
〈na

r ′n
b
r 〉 = 〈na

r n
b
r ′ 〉 〈arbr〉 = 〈b†

ra
†
r 〉 = 0

〈(Sz
r )

2m+1〉 = 0

(2.5)

with m = 1, 2, 3, . . ., etc. It can be seen that some of the above relations are obvious for
the translation-invariant case, but less obvious for the system without translation invariance,
and that these are probably useful for numerical calculations, and meanwhile give some
restrictions on approximate methods. Moreover, one may apply the unitary transformations,
as mentioned above, to equations (2.5), and can obtain the corresponding symmetries of
correlation functions for the transformed systems. We will apply them below.

2.2. Magnetic correlation

Let us study the transverse spin correlation function〈S+
r ′ S−

r 〉 for r 6= r ′, which is related
to the longitudinal correlation function through (2.4), by means of Bogoliubov’s inequality
[5]:

|〈[A, B]〉|2 6 β

2
〈{A, A†}〉〈[[B, H ], B†]〉 (2.6)
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with β = T −1 (kB = 1) the inverse temperature. Note that the relation between the spin
correlation function and magnetic LRO was thoroughly established thirty years ago [6].
Since

[[Sz
r , H ], Sz

r ] = −1

4

∑
r ′(6=r)

(tr ′,ra
†
r ′ar + tr,r ′a†

r ar ′ + tr ′,rb
†
r ′br + tr,r ′b†

rbr ′)

we have

〈[[Sz
r , H ], Sz

r ]〉 = −
∑

r ′(6=r)

tr,r ′ 〈a†
r ar ′ 〉 > 0 (2.7)

where the non-negativity of (2.7) comes from the fact that the inner product(B, B∗) > 0
[5, 7]. By the Schwartz inequality|〈A†B〉| 6

√
〈A†A〉〈B†B〉 we observe that

〈{S+
r ′ S

−
r , S+

r S−
r ′ }〉 6 8 (r ′ 6= r). (2.8)

To obtain inequality (2.8) one has to substitute the definitions of spin operators into the left-
hand side of (2.8), and then apply the Schwartz inequality to electron operators repeatedly
by noting that|〈a†

r ′ar〉| 6 1 and |〈b†
r ′br〉| 6 1. Therefore, settingA = S+

r ′ S−
r (r 6= r ′) and

B = Sz
r in (2.6) and noticing (2.7) and (2.8), we get a bound

|〈S+
r ′ S

−
r 〉|2 6 −4β

∑
r ′(6=r)

tr,r ′ 〈a†
r ar ′ 〉 (2.9)

for r ′ 6= r. One may note that the indexr ′ in the right-hand side (RHS) of (2.9) has
been eliminated due to using the Schwartz inequality in (2.8). The same situation occurs
in the following. Obviously, astr ′,r (r

′ 6= r) → 0, then|〈S+
r ′ S−

r 〉| = 0, which implies that
there is no spin–spin correlation in the atomic limit, i.e., no magnetic (ferromagnetic and
antiferromagnetic) LRO occurs in this case. One may notice that the RHS of inequality (2.9)
depends only on the off-diagonal correlation function〈a†

r ar ′ 〉 and hopping matrix element
tr,r ′ , independent of the local Coulomb potentialUr .

We define the operators

α
†
r,r ′ = t

1/2
r ′,r ar ′ − t

1/2
r,r ′ ar αr,r ′ = t

1/2
r,r ′ a

†
r ′ − t

1/2
r ′,r a

†
r . (2.10)

Then〈α†
r,r ′αr,r ′ 〉 > 0 gives∑

r ′(6=r)

tr,r ′ 〈a†
r ar ′ 〉 > 1

2

∑
r ′(6=r)

|tr ′,r |(〈a†
r ′ar ′ 〉 + 〈a†

r ar〉 − 2). (2.11)

Substituting (2.11) into (2.9) we have

|〈S+
r ′ S

−
r 〉|2 6 2β

∑
r ′(6=r)

|tr ′,r |(2 − 〈a†
r ′ar ′ 〉 − 〈a†

r ar〉). (2.12)

If the system has translation invariance, then from (2.12) we verify rigorously the trivial
fact that |〈S+

r ′ S−
r 〉| = 0 for r ′ 6= r at full filling. Although the bound (2.9) is lower than

(2.12), sometimes the latter is also expected to be useful.
Since the RHS of (2.9) is intimately related to〈a†

r ar ′ 〉, we now discuss it. Forr ′ 6= r,
we have [a†

r ar ′ , a
†
r ar ] = −a

†
r ar ′ . By settingA = a

†
r ar ′ andB = a

†
r ar in (2.6) one obtains

|〈a†
r ar ′ 〉|2 6 −β〈(na

r − na
r ′)

2〉
∑

r ′(6=r)

tr,r ′ 〈a†
r ar ′ 〉 6 −2β

∑
r ′(6=r)

tr,r ′ 〈a†
r ar ′ 〉

for r ′ 6= r. This is a recursion inequality. It turns out to be

|〈a†
r ar ′ 〉| 6 2β

∑
r ′(6=r)

|tr,r ′ |. (2.13)
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Moreover, we are also able to obtain a bound

|〈a†
r ar ′ 〉| 6

√
(〈na

r 〉 − 〈na
r n

a
r ′ 〉)(1 − 〈na

r 〉) (2.14)

for r 6= r ′. The two bounds combined with (2.9) may help us to understand more about the
spin correlation function.

Let us turn to a special case for the moment. Assume thattr,r ′ = −t with t > 0 for r, r ′

nearest neighbours, andt = 0 otherwise, like in the standard single-band Hubbard model
but including the local Coulomb potentialUr . We introduce the Fourier transform ofa

†
r as

a†
r = 1√

M

∑
p

a†
pe−ipr

where the summation overp runs over the dual lattice defined by the boundary conditions.
By summing overr (6= r ′) on both sides of (2.9) and inserting the Fourier transform into it
we obtain ∑

r(6=r ′)

|〈S+
r ′ S

−
r 〉|2 6 2tβ

∑
p,δ

〈np〉eipδ

where |δ| denotes the lattice spacing between nearest neighbours, andnp = a
†
pap + b

†
pbp.

One may observe that when〈np〉 = 1 or constant, we have|〈S+
r ′ S−

r 〉| = 0 for r 6= r ′ because∑
p eipδ = 0. In other words, the single-band Hubbard model with a local Coulomb potential

does not exhibit magnetic LRO at finite temperatures at〈np〉 = 1 or constant. This result is
independent of the sign ofUr and for arbitrary dimensions. Although the condition〈np〉 = 1
or constant is very special, we rigorously rule out the possibility of magnetic LRO in this
case.

Figure 1. The temperature dependence of the
bound (2.16), whereβ−1 is in units of 2t ,
and coordinate numbers are taken as 6, 4, 2
respectively, as indicated. The numerical data are
taken from [8].

If we do not bound〈{S+
r ′ S−

r , S+
r S−

r ′ }〉 by the Schwartz inequality in (2.8), we have an
expression

〈S+
r ′ S

−
r 〉 6 1

2
〈S+

r ′ S
−
r ′ S

+
r S−

r 〉 (2.15)

where we have used (2.5) and〈{A†, A}〉 > 0. Then from (2.6) we get

|〈S+
r ′ S

−
r 〉| 6 βQ(r) +

√
Q(r)2β2 + βP (r, r ′)Q(r)
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with Q(r) = − ∑
r ′(6=r) tr,r ′ 〈a†

r ar ′ 〉 andP(r, r ′) = |〈S+
r ′ S

−
r ′ S+

r S−
r 〉| 6 1 for r 6= r ′. By noting

(2.13) we can obtain an upper bound for the spin–spin correlation function:

|〈S+
r ′ S

−
r 〉| 6 G(β) = 2β2R(r) +

√
4β4R(r)2 + 2β2R(r) (2.16)

with R(r) = (
∑

r ′(6=r) |tr,r ′ |)2. To define the bound unambiguously, we assume thattr,r ′ = t

for r, r ′ nearest neighbours and 0 otherwise. We plotG(β) versus temperatureβ−1, as shown
in figure 1, whereβ−1 is in units of 2t , and the coordinate numbers are taken as 6, 4, 2,
respectively. Since|〈S+

r ′ S−
r 〉| 6 1, we only plot the interesting part. From figure 1 one

may see that the bound decreases rapidly with increasing temperature. Whenβ−1 > 20,
the bound decreases slowly, eventually to zero, as temperature increases. Evidently, the
decay of the spin–spin correlation function with temperature cannot be slower than the
inverse square law at low temperatures and the inverse law at high temperatures. Although
the bound as well as the bound (2.12) cannot tell us in general whether the system can
exhibit magnetic LRO or not, it may shed useful light on the validity of some kinds of
approximation and numerical result, especially regarding the temperature dependence of
spin–spin correlation functions. We note that the spin–spin correlation function of the
single-band Hubbard model was studied numerically for small sizes (4× 4) of a square
lattice at half-filling at low temperatures [8]. The calculated results are found to be smaller
than the present bound, as indicated in figure 1. The reason for this discrepancy may be
that in spite of the finite-size effects in numerical calculations, the present bound is suitable
for macroscopic sizes of lattices and is better for high temperatures.

2.3. Pairing correlation

To investigate the on-site superconducting correlation, we need to calculate the on-site
pairing correlator〈η+

r η−
r ′ 〉 = 〈a†

r b
†
rbr ′ar ′ 〉 in the off-diagonal long-range (ODLR) limit [9]

|r − r ′| → ∞, namely, for off-diagonal long-range order (ODLRO) [10]. As before, we
use Bogoliubov’s inequality. ChoosingA = η+

r η−
r ′ andB = ηz

r in (2.6), and noticing that
[η+

r η−
r ′ , ηz

r ] = −η+
r η−

r ′ for r 6= r ′, and

〈[[ηz
r , H ], ηz

r ]〉 = −
∑

r ′(6=r)

tr ′,r〈a†
r ′ar〉 (2.17)

we have the bound

|〈η+
r η−

r ′ 〉|2 6 −β
∑

r ′(6=r)

tr ′,r〈a†
r ′ar〉 (2.18)

where we have used the Schwartz inequality to obtain the bound〈{η+
r η−

r ′ , η
+
r ′ η−

r }〉 6 2. One
may observe that iftr,r ′ → 0, then |〈η+

r η−
r ′ 〉| → 0. This suggests that no on-site pairing

correlation in the general Hubbard model exists in the atomic limit.
Since ∑

r,r ′(r 6=r ′)

〈a†
r ′ar〉 =

∑
r,r ′

〈a†
r ′ar〉 − N↑ = M〈na

0〉 − N↑ (2.19)

with 〈na
0〉 = 〈a†

0a0〉 the number density with zero momentum of spin-up electrons, and
further assuming thattr ′,r ≡ t = constant, from (2.18) one obtains

1

M

∑
r

|〈η+
r η−

r ′ 〉|2 6 −βt

2
(〈n0〉 − ρ) (2.20)

with 〈n0〉 = 〈a†
0a0 + b

†
0b0〉 and ρ = ∑

r〈nr〉/M. We note that ift > 0 and 〈n0〉 > ρ or
t < 0 and 〈n0〉 6 ρ, then |〈a†

r b
†
rbr ′ar ′ 〉| = 0 for r 6= r ′ from (2.20). In other words, the
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system cannot exhibit the on-site pairing condensation in the aforementioned circumstances.
From the derivation, one may note that the electron hopping terms play a key role in pairing
condensation phenomena in itinerant-electron systems. Besides, this one may observe that
the sign oft also has an effect on the final result, as shown above. Of course, this argument
can also apply to (2.9).

If we exchangeA and B in the derivation of (2.18), then we can get|〈η+
r η−

r ′ 〉|2 6
β〈(ηz

r )
2〉〈[[B, H ], B†]〉. One may see that if

〈na
r n

b
r 〉 6 1

2(〈nr〉 − 1) (2.21)

we have |〈η+
r η−

r ′ 〉| = 0. That is, under the condition of (2.21), the Hubbard model
cannot show the on-site pairing condensation at finite temperatures. Condition (2.21) is
not anomalous; e.g., the case of half-filling with〈na

r n
b
r 〉 = 0 obeys it.

If tr,r ′ = −t for r, r ′ nearest neighbours and/or next-nearest neighbours and 0 otherwise,
then—similarly to in discussions of spin correlation functions—we also have|〈a†

r b
†
rbr ′ar ′ 〉| =

0 for r 6= r ′ at 〈np〉 = 1. We notice that Veilleuxet al [11] have recently studied the
pair correlations of the Hubbard model with next-nearest-neighbour hopping by using the
quantum Monto Carlo method. The consequences that they derive are qualitatively in
agreement with the present rigorous result in the parameter region that they studied.

By substituting (2.13) into (2.18), we get a rigorous upper bound for the off-diagonal
element of the two-particle reduced density matrix:

|〈a†
r b

†
rbr ′ar ′ 〉| 6

√
2β

∑
r ′(6=r)

|tr ′,r | (2.22)

which should also be valid in the limit|r − r ′| → ∞. This bound suggests that the decay
of ODLRO with temperature is not slower than the inverse law. Although the bound is
too loose to compare with the numerical data on small clusters at low temperatures [8], it
gives a hint as regards the pairing correlation function in the thermodynamic limit. Since
〈a†

r b
†
rbr ′ar ′ 〉 is related to the superconducting order parameter〈arbr〉 (quasi-average) by

the asymptotic property [12]〈a†
r b

†
rbr ′ar ′ 〉 → |〈arbr〉|2 in the ODLR limit, equation (2.22)

provides a standard for approximants in calculating the temperature dependence of the
pairing order parameter. Here we would like to point out that one may obtain bounds
similar to (2.22) for other pairings—for instance, the extended s wave and d wave [13].

3. The t–J model

This model has been extensively studied in recent years, but rigorous results are rare,
except that the one-dimensional (1D) supersymmetric model (J = ±2t) can be exactly
solved using the Betheansatz[14]. Many approximate or numerical results on magnetic
and pairing correlations in high dimensions in this model differ quite strongly [8]. We study
the following Hamiltonian:

Ht−J = −t
∑
〈r,r ′〉

(a†
r ar ′ + b†

rbr ′) + J
∑
〈r,r ′〉

(
Sr · Sr ′ − 1

4
nrnr ′

)
(3.1)

on ad-dimensional lattice, where the notation is the same as in section 2,〈r, r ′〉 are nearest
neighbours,J > 0 (we here considerJ , without loss of the generality, as an independent
parameter), andt > 0. The different forms of the model have been discussed elsewhere
[15]. In this model, we assume that double occupancy of every site is excluded. In other
words, each lattice site is constrained to have either one electron (with spin up or down)
or none, as usual. It can be seen that the system has SU(2) spin symmetry. We may also
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obtain some symmetries of correlation functions as in section 2. In this section we will first
derive an upper bound for the average energy, then study the spin–spin correlation function,
and finally discuss the nearest-neighbour pairing correlation function.

3.1. The upper bound for the average energy

From (3.1) we find

〈[[S+
r , Ht−J ], S−

r ]〉 = t
∑
r ′
〈r〉

〈a†
r ′ar + b†

rbr ′ 〉 − 2J
∑
r ′
〈r〉

〈2Sz
r S

z
r ′ + S+

r ′ S
−
r 〉 (3.2)

where r ′
〈r〉 denotes the summation onr ′ running over nearest neighbours ofr. Equation

(3.2) then implies∑
r ′
〈r〉

〈S+
r ′ S

−
r 〉 6 t

4J

∑
r ′
〈r〉

〈a†
r ′ar + b†

rbr ′ 〉 (3.3)

where we have used (2.4) and the non-negative property [5, 7] of (3.2). By noting (3.3)
and〈S+

r S−
r ′ 〉 = 〈S+

r ′ S−
r 〉 one gets

〈Ht−J 〉 6 −5

8
t
∑
δ,p

〈np〉eipδ − J

4

∑
〈r,r ′〉

〈nrnr ′ 〉.

At temperatureT , we have the average energy (internal energy)E0 = 〈Ht−J 〉. On the other
hand, the non-negativity of〈[[arbr , Ht−J ], b†

ra
†
r ]〉 yields

−t
∑
〈r,r ′〉

〈a†
r ar ′ + b†

rbr ′ 〉 6 J

2

∑
〈r,r ′〉

〈nrnr ′ 〉 − J

2
Nz

with z the coordinate number, and thus

E0 6 J

16

∑
〈r,r ′〉

〈nrnr ′ 〉 − 5J

16
Nz.

Furthermore, since〈(nr − nr ′)2〉 > 0 and noting that〈na
r n

b
r 〉 = 0 due to the restriction of no

doubly occupied sites, one has〈nrnr ′ 〉 6 1
2(〈nr〉 + 〈nr ′ 〉). Substituting these results intoE0

we have

E0 6 − 1
4JzN. (3.4)

We would like to point out that the bound (3.4) is generic, not limited to the translation-
invariant system, and is valid for arbitrary filling fraction and arbitrary dimensions. If the
system has the singlet ground-state, thenE0 at T → 0 can be regarded as the ground-state
energy, and〈· · ·〉 thus means the average in the ground state. If the ground state of the
system is degenerate,E0 can also be understood as the ground-state energy for all ground
states. At half-filling, thet–J model reduces to the Heisenberg antiferromagnetic model.
In 1D the ground-state energy is well known to beE0/M = −J ln 2 [14], which clearly
satisfies (3.4):E0/M = −0.693 147J < −0.5J . Away from half-filling, the ground-state
energy of the supersymmetrict–J model also complies with the bound (3.4), as shown in
[14, 18]. In 2D, the numerical result for estimating the ground-state energy of one hole in
the interval 0.2 6 J/t 6 1.0 for small clusters (4× 4) is E0/M = −3.17t + 2.83t (J/t)0.73

[16]. However, the Hamiltonian from [14] does not contain the term−(J/4)
∑

〈r,r ′〉 nrnr ′ .
If this term is taken into account, the numerical results of [14] would be in agreement with
the present bound. Since this bound is a rigorous result, it can be expected to provide
checks for approximate and numerical methods, especially in high dimensions.
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3.2. Magnetic correlation

The magnetic structure factorm(p) is given by

m(p) = 1

M

∑
r,r ′

eip(r−r ′)〈Sz
r S

z
r ′ 〉 = 〈Sz

pSz
−p〉 (3.5)

whereSz
p = (1/

√
M)

∑
r Sz

r eipr . By symmetry,〈Sz
pSz

−p〉 = 1
2〈S+

p S−
p 〉. From (3.3) we obtain∑

p

[
m(p) − t

8J
〈np〉

]
γp 6 0 (3.6)

with γp = ∑
δ eipδ. Note thatm(p) > 0. Inequality (3.6) imposes a severe restriction

on m(p) in the t–J model. If 〈np〉 = 1 or t = 0, we have
∑

p m(p)γp 6 0. Since the
existence of Ńeel order corresponds tom(p) containing aδ-function atQ = (π, π, . . .) in
the infinite-volume limit [17], and lettingm2 be the coefficient of thisδ-function, we get
from (3.6) a bound

m2γQ 6 t

8J

∑
p

〈np〉γp −
∑
p 6=Q

m(p)γp. (3.7)

It has been shown that the 3D half-filledt–J model, i.e., the Heisenberg antiferromagnetic
model, exhibits LRO [17]. Away from half-filling, equation (3.7) may shed some light on
the antiferromagnetic order of thet–J model. For a square lattice,γQ = −4. Then we
have

m2 > 1

4

∑
p 6=Q

m(p)γp − t

32J

∑
p

〈np〉γp.

If we obtain a bound for
∑

p 6=Q m(p)γp, then we can say something about the
antiferromagnetic LRO in the model, which will be left for future study.

We chooseA = S−
r ′ Sz

r and B = S+
r in (2.6). Then [A, B] = S−

r ′ Sz
r for r 6= r ′. Since

1
2〈{S−

r ′ Sz
r , S

z
r S

+
r ′ }〉 6 1

4 by the Schwartz inequality, from (2.6) and (3.2) we have

|〈S+
r ′ S

−
r 〉| 6

√√√√β

8

(
t
∑
r ′
〈r〉

〈a†
r ′ar + b

†
rbr ′ 〉 − 4J

∑
r ′
〈r〉

〈S+
r ′ S

−
r 〉

)

6

√√√√zβ

4

(
t + 2J

√
zβ

4

(
t + 2J

√
zβ

4
(t + 2J

√· · ·)
))

. (3.8)

This inequality gives an upper bound for the spin–spin correlation function in thet–J model.
In particular, ast = 0, the model reduces to the Heisenberg antiferromagnetic model, and
(3.8) becomes

|〈S+
r ′ S

−
r 〉| 6 (Jβ/2)z. (3.9)

That is, the temperature dependence of the spin–spin correlation function cannot be slower
than the inverse law in the Heisenberg antiferromagnetic model.

3.3. Pairing correlation

Now we come to discussing the pairing correlation function. Since there are no doubly
occupied sites in the system, the on-site pairing correlation should be vanishing. In the
following we consider the nearest-neighbour pairing order parameter〈ar1br2〉 with r1, r2
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being nearest-neighbour sites. For this purpose, we have to add a U(1) symmetry-breaking
termH ′ = −α

∑
〈r1,r2〉(ar1br2 +b

†
r2a

†
r1) as well as the chemical potential term−µ

∑
r nr into

the HamiltonianHt−J . Let B = ar1br2, andA = a
†
r1ar1 + b

†
r2br2. Then

[A, B] = −2ar1br2 〈[[ar1br2, Ht−J ], b†
r2
a†

r1
]〉 6 D(r1, r2)

with

D(r1, r2) = t

(∑
r〈r1〉

〈a†
r1
ar〉 +

∑
r〈r2〉

〈b†
r2
br〉

)
− (J + 2µ)(1 − 〈na

r1
〉 − 〈nb

r2
〉)

+ 2J 〈na
r1
nb

r2
〉 + 6Jz − α

(∑
r〈r2〉

a†
r b

†
r2

+
∑
r〈r1〉

b†
ra

†
r1

)
and〈{A, A†}〉 6 8. Substituting these results into (2.6) we obtain the bound

|〈ar1br2〉|2 6 βD(r1, r2) (3.10)

as α → 0 in the thermodynamic limit, where we have used the Schwartz inequality to
bound those terms with four creation and annihilation operators. One may note that
〈ar1br2〉 in (3.10) is Bogoliubov’s quasi-average [12]. On the other hand, according to
Bogoliubov’s argument [12], the off-diagonal element of the two-particle reduced density
matrix 〈b†

r ′
2
a

†
r ′

1
ar1br2〉 has the asymptotic behaviour

〈b†
r ′

2
a

†
r ′

1
ar1br2〉 → 〈b†

r ′
2
a

†
r ′

1
〉〈ar1br2〉 (3.11)

in the ODLR limit [13] |(r ′
2, r

′
1) − (r2, r1)| → ∞. It is worth mentioning that (3.11) is not

incompatible with Haag’s spatial cluster theorem [19]. In the translation-invariant system,
the temperature dependence of ODLRO should thus obey

〈b†
0a

†
1ar1br2〉 6 βD(r1, r2) (3.12)

i.e., the decay of the ODLRO for nearest-neighbour pairs with temperature in thet–J model
with translation invariance cannot be slower than the inverse law. This bound thus offers a
check for some approximate results on the temperature dependence of the superconducting
order parameter.

4. The Hubbard model with bond–charge interaction

The Hamiltonian of the model is given by

Hb−c = −t
∑
〈r,r ′〉

(a†
r ar ′ + b†

rbr ′ + HC) + U
∑

r

a†
r arb

†
rbr

+ X
∑
〈r,r ′〉

[(a†
r ar ′ + HC)(nb

r + nb
r ′) + (b†

rbr ′ + HC)(na
r + na

r ′)]

− µ
∑

r

(a†
r ar + b†

rbr ) (4.1)

whereX is the bond–charge interaction, and the other notation is standard, as usual. This
model has been extensively discussed by Hirsch [20], Barievet al [21], de Boeret al [22]
and Schadschneider [23]. It has been shown [22] that theη-pairing state with ODLRO
is the ground state ifU 6 −2Z|t |, and can be solved exactly in one dimension [21–23],
as t = X and µ = U/2. For certain values ofX and large densities of electrons (small
doping) the bond–charge interaction may lead to an attractive effective interaction between
the holes within the framework of BCS mean-field theory [20]. In this section, we will give
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a few rigorous bounds for the spin–spin and the on-site pairing correlation functions of this
system.

As in the method exploited in preceding sections, it is not difficult to obtain the following
two bounds:

|〈S+
r S−

r ′ 〉| 6
[

8β

(
t
∑
r ′
〈r〉

〈a†
r ′ar〉 − X

∑
r ′
〈r〉

〈a†
r ′ar(n

b
r + nb

r ′)〉
)]1/2

(4.2)

|〈a†
r b

†
rbr ′ar ′ 〉| 6

[
2β

(
t
∑
r ′
〈r〉

〈a†
r ′ar〉 − X

∑
r ′
〈r〉

〈a†
r ′ar(n

b
r + nb

r ′)〉
)]1/2

(4.3)

for r 6= r ′ by settingA = S+
r S−

r ′ and η+
r η−

r ′ with r 6= r ′ and B = Sz
r and ηz

r in (2.6),
respectively, where we have used the spin-flip symmetry (U2). Evidently, if X satisfies the
following condition:

X
∑
r ′
〈r〉

〈a†
r ′ar(n

b
r + nb

r ′)〉 > t
∑
r ′
〈r〉

〈a†
r ′ar〉 (4.4)

then there is no spin–spin correlation or on-site pairing correlation. To ensure the existence
of magnetism and superconductivity in the systemHb−c, the condition opposite to inequality
(4.4) must hold, which gives a restriction on the values ofX.

For the special case wheret = X, the system possesses symmetric particle–hole
symmetry, connected by the unitary operatorU1, as discussed in [23], theη-pairing
symmetry [22] at half-filling, and so forth. This model is very interesting, and the details
will be presented in a separate publication.

5. Summary

We have rigorously investigated magnetic and superconducting pairing correlation functions
in a general class of Hubbard models, thet–J model and a single-band Hubbard model
with additional bond–charge interaction by means of Bogoliubov’s inequality. Some
corresponding upper bounds are obtained, which are expected to provide certain checks
and standards for approximate methods. In some special cases, these bounds rule out the
possibility of corresponding magnetic and pairing LRO.

For the Hubbard models, we obtained an upper bound for the spin–spin correlation
function, which indicates that the decay of the correlation function with temperature cannot
be slower than the inverse square law at low temperatures and the inverse law at high
temperatures. From these bounds we observe that there is no magnetic LRO in the atomic
limit and in the case with the momentum distribution function being constant for the model
with only nearest-neighbour hopping. An upper bound for the on-site pairing correlation
function was obtained, which suggests that the decay of the on-site pairing ODLRO with
temperature is not slower than the inverse law. Since our method is rigorous, the present
result may be applied for clarifying some contradictions in approximate calculations. In
addition, we found that there is no on-site pairing correlation in the atomic limit and in the
cases of either (i)t > 0 and〈n0〉 > ρ or t < 0 and〈n0〉 6 ρ (see (2.20)) or (ii)〈np〉 being
constants for the single-band model but with local Coulomb interaction. It is emphasized
that all of the bounds obtained are independent of the local on-site Coulomb interaction and
are valid for arbitrary dimensions.

For thet–J model, we obtained an upper bound for the average energy (internal energy)
for arbitrary electron fillings. Whatever the ground state of the system is, unique or not, the
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upper bound forT → 0 can be regarded as that of the ground-state energy. Since the bound
is rigorous, it provides a standard for approximate and numerical methods. We also obtained
a lower bound for the Ńeel order, which may shed useful light on the antiferromagnetic order
of the system. An upper bound for the spin–spin correlation function was derived, which
implies that the decay of this function with temperature in the model is not slower than
the β1/2-law away from half-filling and the inverse law at half-filling. An upper bound for
the nearest-neighbour pairing correlation was obtained for the translation-invariant system,
which suggests that the decay of ODLRO with temperature cannot be slower than the inverse
law. The results hold for arbitrary dimensions.

For the Hubbard model with bond–charge interaction, we obtained two bounds for the
spin–spin correlation function and the on-site pairing correlation function, which impose
severe restrictions on the values of the bond–charge interaction.
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